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Bi-Sparsity Pursuit: A Paradigm for Robust

Subspace Recovery
Xiao Bian, Student Member, IEEE, and Hamid Krim, Fellow, IEEE

Abstract

The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data is

distributed in a union of low dimensional subspaces in many real-world applications. The underlying structure may, however, be

adversely affected by sparse errors. In this paper, we propose a bi-sparse model as a framework to analyze this problem, and

provide a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We further show the effectiveness

of our method in a number of applications using real-world vision data.

Index Terms

Signal recovery, Sparse learning, Subspace modeling

I. INTRODUCTION

Separating data from errors and noise has always been a critical and important problem in signal processing, computer vision

and data mining [4]. Robust principal component pursuit is particularly successful in recovering low dimensional structures

of high dimensional data from arbitrary sparse errors [2]. Successful applications of sparse models in computer vision and

machine learning [5] [17] have, however, increasingly hinted at a more general model, namely that the underlying structure

of high dimensional data looks more like a union of subspaces (UoS) rather than one low dimensional subspace. A natural

question is therefore about the feasibility of such an approach in high dimensional data modeling where the union of subspaces

is further impacted by sparse errors. This problem is intrinsically difficult, since the underlying subspace structure is also

corrupted by unknown errors, which may lead to unreliable measurement of distance among data samples, and make data

deviate from the original subspaces.

Recent studies on subspace clustering [13] [7] [19] show a particularly interesting and a promising potential of sparse

models. In [13], a low-rank representation (LRR) recovers subspace structures from sample-specific corruptions by jointly

pursuing the lowest-rank representation of all data. The contaminated samples are sparse among all sampled data. The sum

of column-wise norm is applied to identify the sparse columns in data matrices as outliers. In [7], data sampled from UoS is

clustered using sparse representation. Input data can be recovered from noise and sparse errors under the assumption that the

underlying subspaces are still well-represented by other data points. In [19], a stronger result is achieved such that data may
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H. Krim is with the Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606 USA e-mail: ahk@ncsu.edu
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be recovered even when the underlying subspaces overlap. Outliers that are sparsely distributed among data samples may be

identified as well.

In this paper, we consider a more stringent condition that all data samples may be corrupted by sparse errors. Therefore the

UoS structure is generally damaged and no data sample is close to its original subspace under a measure of Euclidean metric.

More precisely, the main problem can be stated as follows:

Problem 1. Given a set of data samples X = [x1,x2, . . . ,xn], find a partition of X, such that each part XI can be decomposed

into a low dimensional subspace (represented as low rank matrix LI ) and a sparse error (represented as a sparse matrix EI ),

such that

XI = LI + EI , I = 1, . . . , J

Each LI then represents one low dimensional subspace of the original data space, and L = [L1|L2| . . . |LJ ] the union of

subspaces. Furthermore, the partition would recover the clustering structure of original data samples hidden from the errors

E = [E1|E2| . . . |EJ ].

Concretely, the goal of this problem is twofold: First, we wish to discover the correct partition of data so that data subsets

reside in a low dimensional subspace. Second, we wish to recover each underlying subspace from the corrupted data. It is worth

noting that the corrupted data may highly affect the partition, and hence decoupling the two tasks would be problematic. In

this paper, we propose an integral method to decompose the given corrupted data matrix into two parts, representing the clean

data and sparse errors, respectively. The correct partition of data, as well as the individual subspaces, are also simultaneously

recovered. Moreover, we prove a condition for the data to be exactly recovered as the global minimum of the proposed

optimization problem, and provide an algorithm to approximate the global optimizer, which is henceforth referred to as Robust

Subspace Recovery via Bi-Sparsity Pursuit (RoSuRe).

A. Organization of the paper

The remainder of this paper is organized as follows. In Section II, we provide the fundamental concepts necessary for the

development of our proper modeling. Building on this model, we reformulate in Section III Problem 1 as an optimization

problem, and develop the rationale along with the condition for subspace recovery. In Section IV, we introduce the RoSuRe

algorithm for robust subspace recovery. In Section V, we finally present experimental results on synthetic data and real-world

applications.

B. Notation

A brief notational summary of this paper is as follows: The dimension of a m×n matrix X is denoted as dim(X) = (m,n).

‖X‖0 denotes the number of nonzero elements in X, while ‖X‖1 denotes the vector l1 norm. For a matrix X and an index

set J , we let XJ be the submatrix containing only the columns of indices in J . col(X) denotes the column space of matrix

X. We write PΩA
X as the orthogonal projection of matrix X on the support of A, and PΩcA

X = X − PΩA
X . The sparsity

of a m× n matrix X is denoted by ρ(X) = ‖X‖0
mn .
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II. PROBLEM FORMULATION

A. A union of subspaces with corrupted data

Consider a set of data points l ∈ Rd sampled from a union of subspaces S = ∪Sk, with an assumed sufficient sample

density, each sample li can be represented by the others from the same subspace S(li).

li =
∑

i 6=j,lj∈S(li)

wijlj .

Furthermore, if we represent the above relation in a matrix form using L = [l1|l2| . . . |ln] , we then have

L = LW,Wii = 0,

where W is n× n matrix with zero diagonals.

More specifically, let ni be the number of samples from Si, and (bi, bi) the dimension of block Wi of W, then ni ≥ bi. It

follows that bi ≤ maxi{ni}. This condition constrains W to be a sparse matrix, since ρ(W) = ‖W‖0/n2 ≤ max{bi}/n ≤

max{ni}/n. It is worth noting that, to recover the underlying data sampled from UoS, it is equivalent to find a matrix L and

W under the above constraints. The space of W can be then defined as follows,

Definition 1. (k-block-diagonal matrix) We say that an n × n matrix M is k-block-diagonal if and only if there exists a

permutation matrix P, such that M̃ = PMP−1 is a block-diagonal matrix with k diagonal blocks. The space of all such

matrices is denoted as BMk.

We next define the space of matrices whose columns reside in UoS based on the space BMk of W.

Definition 2. (k-self-representative matrix). We say that a d× n matrix X with no zero column is k-self-representative if and

only if

X = XW,W ∈ BMk,Wii = 0.

The space of all such d× n matrices is denoted by SRk

Consider the case where that sample li is corrupted by some sparse error ei. Intuitively, we want to separate the sparse

errors from the data matrix X and associated with the remainder in SRk. Therefore Problem 1 can be formulated as

min ‖E‖0 (1)

s.t.X = L + E,L ∈ SRk.

We have some fundamental difficulties in solving this problem, on account of the combinatorial nature of ‖·‖0 and the complex

geometry of SRk. For the former one, there are established results of using the l1 norm to approximate the sparsity of E

[3][21]. The real difficulty, however, is that not only SRk is a non-convex space,1 and even worse, SRk is not path-connected.

Intuitively, it is helpful to consider L1,L2 ∈ SRk, and let col(L1) ∩ col(L2) = 0, then all possible paths connecting L1 and

1Consider M1,M2 ∈ SR1, let M1 =

(
1 2
0 0

)
and M2 =

(
0 0
2 1

)
. It is easy to see that M = (M1 +M2)/2 =

(
1/2 1
1 1/2

)
/∈ SR1.
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L2 must pass through the origin, given that L is a matrix with no zero columns, and 0 /∈ SRk. SRk can hence be divided

into at least two components Sp and SRk/Sp.

To avoid solving Eqn(1) with a disconnected feasible region, we opt to integrate this constraint into the objective function,

and see the problem from a different angle. We hence propose the following definition:

Definition 3. (W0-function on a matrix space). For any d×n matrix X, if there exists W ∈ BMk, such that X = XW, then

W0(X) = min
W
‖W‖0, s.t. X = XW,Wii = 0,W ∈ BMk for some k.

Otherwise, W0(X) =∞

Then instead of Eqn(1), we consider the following optimization problem:

min
L,E
W0(L) + λ‖E‖0 (2)

s.t.X = L + E.

The relation between Eqn(1) and Eqn(2) is established by the following lemma:

Lemma 1. For certain λ, if (L̂, Ê) is a pair of global optimizer of Eqn(2), then (L̂, Ê) is also a global optimizer of Eqn(1).

The proof of Lemma 1 is presented in Appendix A-A.

Next we will leverage the parsimonious property of l1 norm to approximate ‖ · ‖0. First, the definition of W0(·) is extended

to a l1 norm-based function:

Definition 4. (W1-function on a matrix space). For any d×n matrix X, if there exists W ∈ BMk, such that X = XW, then

W1(X) = min
W
‖W‖1, s.t. X = XW,Wii = 0,W ∈ BMk for some k.

Otherwise, W1(X) =∞

We proppse, as a result, have the following reformulation of the problem,

min
L,E
W1(L) + λ‖E‖1, (3)

s.t.X = L + E

It is worth noting that formulation Eqn(3) bears a similar form to the problem of robust PCA in [2]. Intuitively, both problems

attempt to decompose the data matrix into two parts: one with a parsimonious support, and the other also with a sparse support,

however in a different domain. For robust PCA, the parsimonious support of the low rank matrix lies in the domain of singular

values. In our case, the sparse support of L lies in the matrix W of the W0 function, meaning that columns of L can be

sparsely self-represented.
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III. RECOVERY OF A UNION OF SUBSPACES

In this section, we discuss the important question of when the underlying structure can be exactly recovered by solving

Eqn(3). This problem is essentially twofold: first, it is about the exact recovery of (L̂, Ê); and second, it is about when Ŵ

correctly reflects the true UoS structure.

A. A sufficient condition for exact recovery

The exact recovery of L and E relies on the properties of both matrices. In particular, we would expect these two matrices

be fundamentally different from each other to ensure exact recovery. For example, if E shares the same UoS structure as L,

then a segmentation of L and E would be impossible without further prior information. In other words, if all perturbations

caused by E do not affect the UoS structure of L, we then cannot distinguish E from L only using the information of their

geometric space.

Inspired by this intuition, we establish a sufficient condition of exact decomposition of L and E as follows:

Theorem 1. (L,E) can be exactly recovered by solving Eqn(3) with λ > 0, i.e.(L̂, Ê) = (L,E), if for any Z of the same

dimension of L and L + Z ∈ SRk,

‖PΩcE
Z‖1 − ‖PΩE

Z‖1 ≥
‖W‖1
λ

,

where k is the number of subspaces, and W =W1(L).

The proof of Theorem 1 is presented in Appendix A-B. In particular, this theorem gives the “incoherence” condition between

L and E to guarantee an exact recovery. A given L defines a space of Z such that L + Z ∈ SRk. In this case, Z also has

a low dimensional structure, since when we combine L and Z, the summation is still in SRk. Furthermore, the inequality in

Theorem 1 states that all Z in that space defined by L should be fairly different from E, in the sense that nonzero elements

in Z concentrate on the complement of the support of E.

In practice, as we will see in the experimental section, the sparse errors typically reside in a space distant from the data

space, as sparse errors generally lack coherent structures found in high dimensional data.

B. Geometric interpretation of subspace detection property

After solving for L and E, the problem of finding sparse coefficients W is then equivalent to subspace clustering

without sparse errors. Specifically, W is determined by the problem defined in W1(L) (Definition 4). However, it would

be fundamentally difficult to constrain W in BMk in the procedure of optimization. On the other hand, if we can get rid

of this constraint without affecting the solution of W1(L), then the problem will degenerate to a classical l1 minimization

problem with linear constraint.

We next focus on the constraint W ∈ BMk inW1(L). Intuitively, since the sparsity of W is bounded below by max{bi}/n,

where bi is the size of each block, we can see that the set of sparse matrices and BMk overlap. A natural question would then

be under what condition we can simply use l1 minimization to obtain an accurate W, i.e. reflecting the underlying subspace

structure.
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In a more formal way, if W is the solution of the following problem,

min
W
‖W‖1 s.t. XW = X,Wii = 0, (4)

and supp(W) ⊆ supp(A) ∈ BMk, then the solution of Eqn(4) is the same as that with a constraint X ∈ BMk, where

Aij =

 1 if xi and xj are in the same subspace,

0 otherwise.
(5)

In [18], Theorem 2.5 guarantees the correctness of the subspace segmentation, which they call l1-subspace detection property.

Intuitively, if the “subspace incoherence” for each subspace is high, and the distribution of points in each subspace is not skewed,

then wij 6= 0 if and only if xi and xj are in the same subspace. In this section, we provide additional insight to this problem.

Specifically, we focus on each xi in X, and rewrite Eqn(4) as follows for each xi,

min
w
‖w‖1 s.t. X−iw = xi, (6)

where X−i is the matrix X with a missing column xi.

We next give the l1 subspace detection property as [18], and then provide a sufficient condition for the l1 subspace detection

property to hold.

Definition 5. (l1 subspace detection property) Let dataset X lie in a union of subspaces S = S1 ∪ S2 ∪ . . . SJ . For each

xi ∈ X, the optimal solution of Eqn(6) is wi. Then we say the pair (X, S) satisfies the l1 subspace detection property if and

only if supp(wi) ⊆ {j|xi,xj ∈ Sl}.

Before presenting our main result, we would like to discuss the potential factors on this issue. On one hand, given the

dataset X in a union of subspaces, it would be easier to segment X correctly if the ”distance” between any two subspaces

were sufficiently large. In the extreme case, if two subspaces overlap, then the identity of the points in the overlap region

would not be well-defined. On the other hand, the density of samples in each subspace is important, in the sense that we

need a subspace to be well-represented by the associated samples, so that we do not create “false outliers” by insufficient

sampling. For example, in a two-dimensional subspace with a x − y cartesian coordinate system, if we somehow only have

one sample p along the y coordinate, and all the rest along x coordinate, then without knowing the underlying structure, it

would be legitimate to assume that p is an outlier, and is not able to be represented by other samples, and the rest of the data

fall on a one-dimensional subspace. We therefore would expect a sufficient condition to include both of the above conditions:

all subspaces keeping a “safe distance” from each other, and each having enough samples on each of them.

In particular, the distance between two subspaces can be measured by the first principal angle between them as Θ(Si, Sj).

To provide some intuition here, if Θ(Si, Sj) = 0, then Si and Sj overlap; and if Θ(Si, Sj) = π/2, we have Si ⊥ Sj . On the

other hand, to measure the sufficiency of samples, we need to first define the data density in an appropriate way. We hence

next introduce concepts related to the measure of data sufficiency.
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Definition 6. (Conic Hull [1]) The conic hull of a set C is

cone(C) = {α1x1 + · · ·+ αkxk|xi ∈ C,αi ≥ 0, i = 1, . . . , k}

It is worth noting that cone(C) is also the smallest convex cone that contains C [1].

We then give the ∆-density condition to measure the data sufficiency as follows,

Definition 7. (∆-density condition) For all xli ∈ Xl, if there exists an affine independent set {xlk1 , . . . ,x
l
kq
}ki 6=i ⊂ ±Xj

such that xli ∈ Cli = cone(xlk1 , . . . ,x
l
kq

), and the minimal circumscribed sphere in Sl of {xlk1 , . . . ,x
l
kq
} centered at Oi obeys

Θ(Oi,x
l
kj

) ≤ ∆, j = 1, . . . , q, then we say that Xl in Sl satisfies the ∆-denstiy condition.

Our main result now stated as the following theorem,

Theorem 2. A dataset X of unit-length points which lie in a union of subspaces S = S1∪S2∪ . . . SJ satisfies the l1 subspace

detection property if ∀x ∈ X, x satisfies the ∆-density condition, and for any pair of Si and Sj , Θ(Si, Sj) > ∆, where

Θ(Si, Sj) is the first principal angle between Si and Sj .

The proof is presented in Appendix A-C. The interpretation of Theorem 2 is straightforward: the angle between subspaces

is bounded below by ∆, which is exactly our measure for the data density, the maximum “size” of the smallest conic hull

containing each sample. Specifically, if we have a higher density of samples, which means we have a clearer image of each

subspace, then the segmentation of the union of subspaces can be accurately carried out with a more stringent condition, i.e.

the angle between subspaces can be smaller. On the other hand, if the samples are sparse and far from each other, it would be

more difficult to recover the underlying structure, and therefore we need the union of subspaces to be widely separated, i.e. a

larger principal angle.

C. An approximate solution via sparse modeling

Under the conditions stated in Theorem 2, we can subsequently modify W1(L) into a convex function and define it in a

connected domain by dropping the constraint W ∈ BMk. Specifically, we have

W̃1(L) = min
W
‖W‖1, s.t. L = LW,Wii = 0. (7)

Substituting W1(L) by W̃1(L) in Eqn(3) allows us to relax the constraints of Eqn(3) and directly work on the following

problem,

min
W,E
‖W‖1 + λ‖E‖1, (8)

s.t.X = L + E,L = LW,Wii = 0.

Other than posing this problem as a recovery and clustering problem, we may also view it from a dictionary learning angle.

Note that the constraint X = L + E may be rewritten as X = LW + E, to therefore reinterpret the problem of finding L
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and E as a dictionary learning problem. In addition to the sparse model, atoms in dictionary L are brought from data samples

with sparse variation. It may hence be seen as a generalization of [6] in the sense that we not only pick representative samples

from the given data set using a l1-norm, but also adapt the representative samples so that they can “fix” themselves and hence

be robust to sparse errors.

IV. ALGORITHM: ROBUST SUBSPACE RECOVERY VIA BI-SPARSITY PURSUIT

Obtaining an algorithmic solution to Eqn(8) is complicated by the bilinear term in the constraints which yield a a non-convex

optimization functional. In this section, we leverage the successes of alternating direction method (ADM) [11] and linearized

ADM (LADM) [12] in large scale sparse representation problem, and focus on designing an adapted algorithm to approximate

the minimum of Eqn(8).

Our method, referred to herein, by robust subspace recovery via bi-sparsity pursuit (RoSuRe), is based on linearized

ADMM [12]. Concretely, we pursue the sparsity of E and W alternately until convergence. Besides the effectiveness of

ADMM on l1 minimization problems, a more profound rationale for this approach is that the augmented Lagrange multiplier

(ALM) method can address the non-convexity of Eqn(8) [14] [16]. Although there is no guarantee on the convergence of

general non-convex problems, Theorem 4 in [16] states that under the ALM setting, the duality gap may be zero when certain

conditions are satisfied. We show the zero duality gap property of Problem Eqn(8) in Appendix B. We can then approximate

the optimizer by solving the dual problem, with an appropriate augmented Lagrange multiplier.

Algorithm 1 Subspace Recovery via Bi-Sparsity Pursuit (RoSuRe)
Initialize: Data matrix X ∈ Rm×n, λ, ρ, η1, η2

while not converged do
Update W by linearized soft-thresholding

Lk+1 = X−Ek,

Wk+1 = T 1
µη1

(
Wk +

LTk+1(Lk+1Ŵk−Yk/µk)

η1

)
.

Wii
k+1 = 0.

Update E by linearized soft-thresholding
Ŵk+1 = I−Wk,

Ek+1 = T 1
µη2

(
Ek +

(Lk+1Ŵk+1−Yk/µk)ŴT
k+1

η2

)
Update the lagrange multiplier Y and the augmented lagrange multiplier µ

Yk+1 = Yk + µk(Lk+1Wk+1 − Lk+1)
µk+1 = ρµk

end while

Specifically, substituting L by X − E, and using L = LW, we can reduce Eqn(8) to a two-variable problem, and hence

write the augmented Lagrange function of Eqn(8) as follows,

L(E,W,Y, µ) = λ‖E‖1 + ‖W‖1 + 〈LW − L,Y〉

+
µ

2
‖(X−E)W − (X−E)‖2F , (9)
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where Y is the Lagrange multiplier. Letting Ŵ = I−W, we alternatively update W and E,

Wk+1 = arg min
W
‖W‖1 + 〈Lk+1W − Lk+1,Yk〉

+
µ

2
‖Lk+1W − Lk+1‖2F , (10)

Ek+1 = arg min
E
λ‖E‖1 + 〈(E−X)Ŵk+1,Yk〉

+
µ

2
‖(E−X)Ŵk+1‖2F . (11)

The solution of Eqn(10) and Eqn(11) can be well approximated in each iteration by linearizing the augmented Lagrange term

[12],

Wk+1 = T 1
µη1

(
Wk +

LTk+1(Lk+1Ŵk −Yk/µk)

η1

)
, (12)

Ek+1 = T 1
µη2

(
Ek +

(Lk+1Ŵk+1 −Yk/µk)ŴT
k+1

η2

)
, (13)

where η1 ≥ ‖L‖22, η2 ≥ ‖Ŵ‖22, and Tα(·) is a soft-thresholding operator.

In addition, the Lagrange multipliers are updated as follows,

Yk+1 = Yk + µk(Lk+1Wk+1 − Lk+1) (14)

µk+1 = ρµk (15)

V. EXPERIMENTS AND VALIDATION

A. Experiments on Synthetic Data

Section III discusses the necessary condition to recover a data structure by solving Eqn(1). In this section, we hence

empirically investigate the viability extent of RoSuRe with various conditions. The recovery results are compared with Robust

PCA [2] using the method presented in [11] and sparse subspace clustering using the algorithm in [8].

(a)L0 (b)E0 (c)WRoSuRe

(d)LRoSuRe (e)ERoSuRe (f)|L0 − LRoSuRe|
Fig. 1. An example of robust subspace exact recovery.

The data matrix L is fixed to be a 200×200 matrix, and all data points are uniformly sampled from a union of 5 subspaces.

The norm of each sample is normalized to 1. 10% elements of each column in sparse matrix E0 are randomly selected to be
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nonzeros. The value of each nonzero element in E0 then follows a gaussian distribution with mean 0.5 and variance 0.5. Fig.1

shows one example of the exact recovery and clustering. Note that (LRoSuRe,ERoSuRe) and (L0,E0) are almost identical, and

WRoSuRe shows clear clustering properties such that wij ≈ 0 when li, lj are not in the same subspace. In Fig.2 we compare

the RoSuRe performance to that of Robust PCA, and demonstrate the significant improvement using our proposed method.

(a)E0 (b)ERPCA (c)|L0 − LRPCA|

(d)L0 (e)ERoSuRe (f)|L0 − LRoSuRe|
Fig. 2. Comparison with Robust PCA.

Fig.3 is the overall recovery results of RoSuRe, robust PCA and SSC. White shaded area means a lower error and hence

amounts to exact recovery. The dimension of each subspace is varied from 1 to 15, and the sparsity of S from 0.5% to 15%.

Each submatrix LI = XIY
T
I with n×d matrices XI and YI , are independently sampled from an i.i.d normal distribution. The

recovery error is measured as err(L) = ‖L0− L̂‖F /‖L0‖F . We can see a significantly larger operational range of RoSuRe in

comparison to those of robust PCA and SSC. The key to RoSuRe better performance than robust PCA is due to the underlying

data model assumption. Concretely, when the sum of the dimension of each subspace is small, the UoS model degenerates to a

”low-rank + sparse” model, which suits well robust PCA. On the other hand, when the dimension of each subspace increases,

the overall rank of L tend to be accordingly larger and hence the low rank model may not hold anymore. Since RoSuRe is

designed to fit UoS model, it can recover the data structure over a wider rank range. The SSC method specifically satisfies

the modeling condition when only a small portion of data are outliers. The case where most of the data is corrupted makes it

very difficult to reconstruct samples by other corrupted ones.
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Fig. 3. Overall recovery results of RoSuRe and Robust PCA. [0 0.2] is mapped to [1 0] of grayscale image
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(a)Background (b)Foreground (c)Original frame

(d)Background (e)Foreground (f)Original frame
Fig. 4. Background subtraction on traffic videos (static camera)

B. Experiments on Computer Vision Problems

Since the UoS model has been intensively researched and successfully applied to many computer vision and machine learning

problems [13] [8] [4], we expect that our model accordingly address these problems. Here, we next present experimental results

of our method in video background subtraction and face clustering problems, as exemplars of its promising potential.

1) Video background subtraction: Surveillance videos can be naturally modeled as UoS model due to their relatively static

background and sparse foreground. The power of our proposed UoS model lies in coping with both a static camera and a

panning one with periodic motion. Here we test our method in both scenarios using surveillance videos from MIT traffic

dataset [20]. In Fig.4, we show the segmentation results with a static background. For the scenario of a ”panning camera”,

we generate a sequence by cropping the previous video. The cropped region is swept from bottom right to top left and then

backward periodically, at the speed of 5 pixels per frame. The results are shown in Fig.5. We can see that the results in the

moving camera scenario are only slightly worse than the static case.

(a)Background (b)Foreground (c)Original frame

(d)Background (e)Foreground (f)Original frame
Fig. 5. Background subtraction on traffic videos (panning camera)

More interestingly, the sparse coefficient matrix W provides important information about the relations among data points,

which potentially may be used to cluster data into individual clusters. In Fig. 6(a), we can see that, for each column of the

coefficient matrix W, the nonzero entries appear periodically. In considering the periodic motion of the camera, we essentially

mean that every frame is mainly represented by the frames when the camera is in a similar position, i.e. a similar background,

with the foreground moving objects as sparse perturbations. We hence permute the rows and columns of W according to the

position of cameras, as shown in Fig. 6(b). A block-diagonal structure then emerges, where images with similar backgrounds

are clustered as one subspace.


















